
 
© 2024 the Authors. Published by the University of Basrah. This is an open-access article distributed under the Creative Commons Attribution 

License 4.0, which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 

1. Introduction 

Images are visual representations that carry a wealth of 

useful information. In digital image techniques, it is important 

to analyze an image and extract information from it without 

affecting the image's other features in order to accomplish 

certain tasks. [1]. Image analysis and object or pattern 

recognition became important topics in computer science in 

various fields of real-world and scientific applications, such as 

medical, military, surveillance and security, remote sensing, 

robotics, automotive industry, agriculture, entertainment, 

astronomy, maps, geographic and satellite images [2-4]. 

Microstructural phases in metallic materials determine the 

physical and mechanical properties of that material 

significantly, along with the chemical composition [5, 6]. 

Research in this field has spanned decades since discovering 

that all materials have an inherent microstructure. By 

accurately identifying the microstructure, it becomes possible 

to modify and alter the material's properties to achieve 

preferred characteristics [7]. Merely observing and capturing 

microstructures with microscopes is no longer adequate; the 

rapid development of metallurgy requires the ability to 

separate, distinguish, and quantify the metallic phases, as well 

as calculate grain size and distribution in the microstructure. 

To perform this task, there are non-image methods like X-ray 

diffraction tests and other methods that require complex 

equipment, and there are image-based methods, which are 

processing the microscopic LOM or SEM images to extract the 

desired information by segmentation, feature extraction, 

classification, identification, and quantification. Using various 

techniques and approaches, from the simplest pixel-based 

methods to the most complicated machine learning algorithms, 

Fig. 1 shows examples of microscopic images that can be seen 

in metallic microstructures. The microstructural images are 

considered one of the most complicated and challenging 

images ever due to the following miscellaneous characteristics 

that make the phase characterization a difficult problem even 

for the expert eye: 
 

1. The overlapping of colors, boundaries, and textures in phase 

regions and limited contrast make simple identification 

methods inaccurate or even impossible. 

2. There are infinite shapes and sizes of grains, colonies, or 

patches distributed throughout the image; there are 

connected and disconnected areas; foreground and 

background phases. 

3. Different orientation angles of the grains and colonies, not 

well-defined grain boundaries, or a significant level of 

similarity between the phases, etc. such parameters make it 

difficult to distinguish and separate. For example, 

multiphase steels may contain ferrite, plate or lathe 

martensite, pearlite colonies with different orientations, 

lamella distances and sizes, lower and upper bainite, 

retained austenite. 

Nevertheless, image processing techniques have been 

successfully employed in many aspects of steel research 

studies for tasks such as phase classification, characterizing the 

microstructure in a whole single image, and measuring grain 

size. The difficulty of phase segmentation in microstructure is 

basically dependent on the number of present phases and the 

grey-level contrast between phases [8]. 

The complexity of steel microstructures still represents a 

great challenge in identifying and quantifying the present 

phases and obtaining any required statistical data from them. 

Moreover, the point counting method is extremely laborious, 

time-consuming, and subject to operator decision [9]. The 

purpose of developing microscopic image analysis methods is 

to save some labor and time from the manual method and 

equipment-based methods for measuring phase percentages, in 

addition to providing alternative approaches. In addition to the 
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fact that, in many cases, the microstructural details are too 

small to be marked manually by hand, one can zoom in on the 

training image to see single pixels and then mark the training 

areas [10]. 

This paper provides a comprehensive literature review on 

various image segmentation techniques that have been 

frequently employed or recommended to be used in the period 

from 2007 to 2023 in metallurgical research on various 

microstructures, mentioning their advantages and 

disadvantages since every method comes with its own pros and 

cons. After elaborating briefly on their work principles, a more 

detailed explanation can be found in the authoritative 

references for each method. Sparing time and effort by 

searching for and experimenting with all the available methods 

for future academics and researchers is the main aim of this 

review. 

The paper is organized as follows: Section 2 explains 

image segmentation. Section 3 describes different types of 

image segmentation techniques to deal with microstructural 

images, and Section 4 includes a brief conclusion and 

recommendations to be considered when intending to use 

image segmentation. 

 

 

 
 

Fig. 1 examples of microscopic images showing the variety of microstructures that can be seen in different materials [11]. 

 

2. Image segmentation 

Image segmentation is the process of automatically 

dividing an image into distinct, meaningful, and non-

overlapping regions. The quality of the segmentation process 

determines the efficiency of other image processing tasks, such 

as object detection, feature extraction, classification [12, 13]. 

There are many segmentation techniques that are suitable for 

different types of digital images. Starting from the simple 

methods that depend on pixel intensity values, reaching to the 

more complicated methods that rely on complex statistics such 

as texture or pattern orientation, distancing, similarity, and 

other features that lead to more accurate recognition and 

classification of the objects of interest within an image [14]. 

Some microstructures appear clear and easily separable, 

other microstructures show overlapped phases in terms of 

texture, pattern, or color. In addition to many other parameters 

that make the segmentation process difficult, such as different 

orientation angles of the grains, not well-defined grain 

boundaries, or a significant level of similarity between the 

phases, such parameters make distinguishing and separation 

difficult. Here, the need for accurate software appears to be to 

accomplish this task and obtain as correct, accurate, and 

reliably segmented image as possible. There is no general 

segmentation technique that can satisfactorily work with all 

types of images. Therefore, the selection of any image 

segmentation technique is done after observing the problem 

domain [15-17]. There is no explicit rule to decide whether the 

segmentation is totally correct; this decision relies on an 

operator's experience. The inaccurate segmentation (under- or 

over-segmentation of a single pixel) can vary measurements 

like volume fractions by several volume percent’s [18]. Even 

using manual methods such as the ASTM E562 standard [19] 

for comparison, which is implemented to measure volume 

fraction based on point counting is very labor intensive, slow, 

and inefficient. Such methods are also prone to human error 

[20]. 

3. Image segmentation techniques 

Segmentation techniques can be divided depending on 

many considerations. Since this work covers the topic of 

microstructural image segmentation, the techniques will be 

divided into five groups depending on their frequent use and 

general principles that suit the microstructural images: pixel-

based (thresholding), edge-based, region-based, watershed 

algorithm, machine learning segmentation techniques, and 

EBDS mapping microscopy. 

3.1. Pixel-based segmentation (Thresholding) 

Thresholding is one of the simplest yet most effective 

classical segmentation methods, dividing the pixels of an 

image based on their intensity value or threshold [21]. 
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Thresholding can be binary if the image contains only two 

phases or multiple color regions if the image contains more 

than two phases. There are other methods that fall under the 

thresholding category, such as Otsu and adaptive thresholding, 

etc. Among many segmentation tools, Otsu is one of the most 

important and widely used methods, and it has been preferred 

for the segmentation of microstructure images [22]. There are 

certain pre-processing and post-processing techniques 

required for threshold segmentation [23]. 

Gupta et al. [22] applied the Otsu thresholding to SEM 

microstructure images that contained a combination of two 

phases. Which adopts clustering-based image thresholding 

that reduces the grey-scale images to binary images. Gola et 

al. [24, 25] also used threshold value segmentation on the 

LOM images to separate the second-phase objects from the 

matrix. Naik et al. [26] applied thresholding using Image J 

software to identify the present phases, but it failed to identify 

some grain boundaries. 

Fuchs [27] used the grey value segmentation method in the 

KS400 image analysis software to calculate the volume 

fraction of martensite in plain carbon steel and bainite tool 

steel 100Cr6 microstructures. 

Fernandes et al. [28] successfully used the threshold values 

for binarization and segmentation of three grades of nodular 

cast iron microstructure images to characterize and quantify 

graphite nodules. 

3.2. Edge-based segmentation 

Region boundaries and edges are related to each other, as 

there is often a sharp and continuous rhythm in intensity values 

at region boundaries. In this technique, an edge filter is applied 

to the image, classifying the pixels as edge or non-edge based 

on the filter's output [29]. 

Most edge-based techniques fall into one of two categories: 

search-based or zero-crossing-based techniques. However, 

creating incomplete or unnecessary edges is a significant 

weakness prevalent in all edge detectors [8]. Techniques like 

Canny edge detection, Sobel edge detection, and gradient-

based methods are often employed for microstructure 

segmentation. 

Rauch et al. [30] developed a modified Canny Detector 

algorithm to process the image and detect the edges of grains 

in the microstructure, as most of the current algorithms 

dedicated to edge detection or image segmentation—like 

traditional Canny Detector—did not cope with the authors 

research problems, returning unsatisfactory results. 

Additionally, the edges of grains were fulfilled by applying the 

Watershed algorithm. 

Sakthivel et al. [31] employed different edge detection 

operators (Prewitt’s Edge Detection, Sobel’s Edge Detection, 

Cranny’s Edge Detection, and Robert’s Edge Detection 

Operators) in order to detect the grain boundaries in nodular 

cast iron. This process facilitates counting the number of 

nodules in the microstructure image, which correlates with the 

mechanical properties such as ductility, malleability, and 

brittleness of the material. 

Biswal et al. [32] selected and compared different edge 

detection operators for optical micrograph analysis in an 

aluminum-based hybrid composite microstructure; these 

operators are the Sobel operator, Robert operator, Prewitt 

operator, and Canny operator. The statistical analysis results 

recommended canny edge detectors to be used for watershed 

transformation to calculate the grain edge to find the average 

grain size, as they provide the best quality images. 

Choudhury et al. [33] developed an automated phase 

identification technique that allows detecting different phases 

separately in the ultrahigh-carbon steel complex 

microstructure. This technique employed edge detection 

followed by watershed segmentation and deep learning 

(convolutional neural network) for automated phase 

segmentation from 2D microstructure images to identify 

dominated phases. 

3.3. Region-based segmentation 

Region-based methods intend to partition the region 

directly according to general image properties by grouping 

together pixels having similar properties and splitting 

dissimilar pixels into groups [8]. Several methods are 

commonly used for region-based segmentation: region 

growing, region merging, region splitting, and region split-

merge. 

Müller et al. [34] worked on a segmentation approach 

based on analyzing local orientations and directions in an 

image to distinguish lath-like from granular structures in 

complex-phase steel. A window of appropriate size slides over 

the image, and the gradient direction and its magnitude inside 

this window are determined for each pixel. The segmentation 

results align with the regions identified by human experts. As 

bainitic structures are difficult to segment because they differ 

only in the forms and arrangements of bainitic ferrite and the 

carbon-rich second phase but not in their grey scale values, 

Thus, threshold segmentation cannot be used to separate 

bainitic structures. They concluded that this approach can be 

universally applied for the segmentation of lath-like structures, 

independent of the material or type of microstructure. Fig. 2 

shows a flowchart illustrating different steps of the local 

orientation and direction analysis in Müller et al.'s work. 

 

Fig. 2 Flowchart illustrating different steps of the local orientation and 

direction analysis in Müller et al.'s work [34]. 

Chen et al. [35] proposed an efficient segmentation method 

for metallographic images. The segmentation procedure was 

formulated as a new framework for an iterative watershed 

region growing constrained by boundary information. The 

region-growing method is based on the seed-growing 

principle. The seeds are selected by an effective double-

threshold approach with relatively low computational cost and 

satisfactory results. Figure 3 shows segmentation principle and 

results from Chen et al. work. 
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Fig. 3 Segmentation principle and results from Chen et al. work [35]. 

3.4. Watershed segmentation 

This technique considers the image as a topographic 

surface and floods this surface from local minima [36]. The 

meeting floods from different directions are prevented from 

merging at these points, which are defined as the boundaries. 

The transform has been widely used in analyzing and 

partitioning low-contrast optical microstructure images 

through a complete division of the image into distinct regions 

[20, 32]. It is particularly helpful for splitting phases that 

connect closely or those with weak boundaries [20]. It is worth 

mentioning that this technique is preferred to be combined 

with other techniques, such as edge detection and region-based 

segmentation techniques, to work as a hybrid algorithm 

together to obtain better and more accurate segmentation 

results, as done in [30, 32, 33, 35]. 

Campbell et al. [20] used the watershed algorithm to 

segment microstructural images of Ti6Al4V titanium alloy to 

determine the grain size and phase fractions and compare the 

results with the manual method. The algorithm was used with 

substantial adjustments to improve segmentation accuracy 

(pre- and post-processing techniques), as this algorithm is 

prone to over-segmentation and existing implementations. 

Figure 4 shows the graphical abstract of Campbell et al. work. 

 

Fig. 4 the graphical abstract of Campbell et al. work [20]. 

Komenda [10] also used the watershed segmentation 

function in combination with the Euclidean Distance Map to 

segment nickel-based superalloy SEM microstructure images. 

The bright edges of the targeted phase were not detected using 

this method, only the flat top parts were intended to be 

measured. 

3.5. Machine learning-based segmentation 

The complex microstructures increased the need for 

advanced techniques to achieve segmentation task, such as 

machine and deep learning methods [37]. Machine learning 

techniques have a revolutionary effect on the field of image 

processing by offering accurate and efficient solutions to 

challenging problems. These techniques employ several 

strategies to automatically learn distinguishing features from 

training data to effectively segment an image into distinct 

regions. With so many machine learning techniques available, 

the techniques that are most popular, frequent, and 

successfully applied for microstructure segmentation will be 

reviewed next. 

Durmaz et al. [37] trained distinct U-Net architectures with 

30–50 LOM micrographs of different imaging modalities to 

accomplish the challenging task of segmenting the lath-bainite 

in complex-phase steel, achieving a satisfying performance 

with accuracies of 90% comparable to expert segmentations. 

Figure 5 shows the graphical abstract of Durmaz et al. 

segmentation using the LOM micrograph. 

 

Fig. 5 the graphical abstract of Durmaz et al. segmentation using the LOM 

micrograph [37]. 

Wang et al. [38] employed a U-Net model to recognize and 

segment different generations of Ni3Al-based alloy 

precipitates from 2D SEM microstructural images. The 

targeted phases (precipitates) have been segmented accurately. 

Pixel accuracy (PA) was used to quantitatively evaluate the 

training accuracy. 

Ostormujof et al. [39] selected the U-Net network 

architecture to discriminate between ferrite and martensite in 

dual-phase steel microstructures. Pixel-wise accuracies of 

around 95%–98% were obtained, which represents high 

accuracies compared to other approaches in the literature. 

Azimi et al. [40] employed a novel approach called max-

voted FCNN (MVFCNN) as a step in their research for better 

accuracy in machine learning methods for steel SEM 

microstructural image classification. This approach is pixel-

wise segmentation via a Fully Convolutional Neural Network 

(FCNN) accompanied by a max-voting scheme. They 

concluded that using this approach is an effective and robust 

way of determining the distribution and size of different 

microstructures when these networks are trained end-to-end. 

Fig. 6 shows an overview of the max-voted segmentation-

based microstructural classification approach using FCNNs 

(MVFCNN) used in Azimi et al. work. 

Liu [8] used the K-Nearest Neighbor (KNN) algorithm for 

a microstructure that contained pearlite colonies. The 

segmentation result was fairly accurate on a synthetic image 

that contains idealized pearlitic structures, but there were 

fundamental difficulties with estimating colony boundaries 

from a real single 2-D pearlitic image. The multi-phase 

analysis was fairly accurate for the overall phase fraction under 

the investigating conditions. 
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Fig. 6 Overview of the max-voted segmentation-based microstructural classification approach using FCNNs (MVFCNN) used in Azimiet al. work [40]. 

Bulgarevich et al. [41] used the Random Forest (RF) 

algorithm to segment and quantify the microstructure phases 

of steel (i.e., ferrite, pearlite, bainite, and martensite) in optical 

microscope images. They found that the segmentation quality 

is reasonably applicable to obtain the statistics on the volume 

fraction of each phase and considered it the most versatile 

method for this type of image. Figure 7 shows a scheme of 

image segmentation with machine learning Random Forest 

statistical algorithm used in Bulgarevich et al. work. 

Fig. 7 Scheme of image segmentation with machine learning Random Forest 

statistical algorithm used in Bulgarevich et al. work [41]. 

Ajioka et al. [42] compared three segmentation methods 

for steel microstructure; these methods are SegNet and U-Net 

deep learning models, in addition to segmentation by threshold 

values to evaluate the validity of previous models. The results 

showed that deep learning models are more accurate. In 

particular, the U-Net model showed high segmentation 

accuracy with sufficient recognition for material 

microstructures. Figure 8 shows segmentation results of 

Ajioka et al. work. 

3.6. Electron backscatter diffraction mapping 

Electron Backscatter Diffraction (EBSD) is a scanning 

electron microscope (SEM)-based technique that is used in 

metallography to segment the microstructure based on the 

grain or crystal orientation of the metallic phases as colored 

maps. The segmented image is then processed in the next step 

to separate the obtained threshold values, enabling the 

microstructure to be analyzed, visualized, and quantified [43], 

grain sizes in irregular structures to be determined, and 

different phases to be quantitatively distinguished [44-46]. 

EBSD is a very powerful technique for the microstructural 

characterization and analysis of crystalline materials [43]. This 

technique also has its drawbacks, as it is rather time-

consuming and therefore more expensive than conventional 

microscopy, as well as the difficulty of separating phases with 

the same crystal symmetry in multiphase structures. Another 

problem is that when EBSD is used at high resolution, which 

is often the case for high-strength steels, any instability in the 

long measurement periods would make the results useless [43]. 

The use of EBSD has been limited in industrial research 

and development. This is partly because of the complexity of 

the structures of many commercial products and the 

difficulties that it poses to achieve reliable EBSD data, in 

addition to the reasons mentioned earlier. 

 An original image   Output image by the threshold    Output image by SegNet   Output image by U-net 

Fig. 8 Segmentation results of Ajioka et al. work [42]. 
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Shrestha et al. [9] developed a new automated 

identification and quantification technique for the 

characterization of acicular, polygonal, and bainitic ferrite 

microstructures using a combination of electron back scatter 

diffraction (EBSD) and MATLAB. Taking advantage of 

EBSD mapping, which reveals the ferrite microconstituents in 

different colors according to the corresponding miller's 

indices, makes it easier to identify the phases and quantify the 

area fractions, as shown in Fig. 9. The selection of criteria for 

identification and quantification was based on grain boundary 

misorientation, aspect ratio, mean misorientation, and grain 

size. 

Fig. 9 EBSD inverse pole figure maps (a, c, and e) and band contrast maps 
(b, d, and f) of (a and b) bainite, (c and d) acicular ferrite, and (e and f) 

polygonal ferrite [9]. 

Zaefferer et al. [46] employed EBSD-based orientation 

microscopy as a tool to identify and quantify the volume 

fractions of bainite and ferrite in low alloy steels. A satisfying 

separation based on the calculation of kernel average 

misorientation (KAM) maps was used to differentiate phases. 

The threshold for the KAM value was determined in such a 

way that the boundaries between ferrite and bainitic ferrite 

appear smooth in the microstructure. 

Zhu et al. [47] used EBSD maps to distinguish ferrite from 

bainite, especially granular bainitic ferrite in advanced high-

strength steels, in addition to proposing an automatic phase 

quantification method using EBSD data based on the obtained 

results, which is a clear and new quantitative criterion to 

separate phases in complex microstructures. 

Zhang et al. [48] identified and characterized martensite 

and ferrite phases in dual-phase (DP980) steels using EBSD 

and scanning probe microscopy. The results showed that a 

large fraction of martensite could be distinguished by the 

image quality (IQ) parameter obtained during EBSD imaging, 

and they concluded that EBSD measurements can accurately 

identify martensite and ferrite phases in DP980 steel. 

Pinard et al. [49] also used combined EBSD and electron 

probe microanalysis (EPMA) carbon measurements to identify 

ferrite, martensite, and bainite in dual-phase steels. To validate 

and enhance the identification of the microconstituents (i.e., 

ferrite, martensite, and bainite), high-resolution carbon 

mappings were acquired on a field emission electron 

microprobe performed by EBSD utilizing image quality (IQ) 

and kernel average misorientation. 

As there is no one perfect technique that is suitable for all 

images and cases, Table 1 lists the advantages and 

disadvantages of the segmentation methods mostly used with 

microstructural images.

Table 1. lists the advantages and disadvantages of the segmentation methods mostly used with microstructural images. 

Category Advantages Disadvantages 

Pixel- Based 

Segmentation 

(Thresholding) 

− Simple, easy to employ and computationally efficient.

− Fast and easy to and interpret.

− Works well with high contrast microstructures (high

threshold difference).

− Sensitive to noise and lighting.

− Not accurate when there are low difference intensity

values between phases.

− May fail to identify the grain boundary and categorize it

into the adjacent phase.

Edge-Based 

segmentation 

− Detect and highlight boundaries between different phases.

− Works with low intensity or color contrast.

− Creating incomplete or unnecessary edges is a significant

weakness prevalent in all edge detectors.

− Sensitive to noise and irregularities.

Region-Based 

segmentation 

− Produce coherent regions, linking edges, and gaps

produced by missing edge pixels, etc.

− Ability to handle intensity variations and noise.

− More accurate boundaries and region contours.

− Sensitive to initial seed selection and parameter tuning.

− Difficult to deal with complex or irregular-shaped

regions.

Watershed 

segmentation 

− Able to accurately segment complex microstructures.

− Deals with both under- and over-segmentation problems.

− The possibility of over-segmentation when the boundaries

of phases or regions are weak and not well defined.

− Sensitive to noise and variations in image gradient.

Machine 

Learning 

Techniques 

− Complex pattern recognition.

− Adaptability to various microstructure characteristics.

− Quick performance saving time of data processing

− Ability of merging, modifying, and infinite learning

enhancement.

− Large amount of training data is required.

− High specifications computers for training and inference

are required.

− Prone to overfitting.

EBSD 

− High spatial resolution.

− Enable precise grain size, shape, and distribution analysis.

− Multiscale analysis.

− Slow technique

− During long measurement periods any instability can

affect the results tremendously.

− The difficulty of separating phases with the same grain

orientation.

− More expensive to use than conventional microscopy

− Unreliable data may be achieved for the complex

microstructures.
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4. Conclusion 

1. Using image processing and analyzing techniques for 

identification and quantification of microstructural phases, 

collecting data about grain sizes, orientation, and 

distribution is constantly increasing. As it reduces the time 

required of data calculating and analyzing, relieving 

researchers from the labor work of manual analysis and 

saving the cost of using non-image techniques that require 

heavy equipment. 

2. From the reviewed literature, we can see and conclude that 

there are techniques that have been used and succeeded 

with some microstructures and failed with others, as each 

case and type of image and microstructure has its own 

unique characteristics that make certain methods most 

successful in dealing with them to obtain the best and most 

accurate results. 

3. The scientific arena is now more open for machine learning 

techniques and artificial networks, as they are more 

accurate, flexible, fast, and have an infinite potential for 

learning, development, merging, and modification. 

4. The possibility of merging machine learning algorithms 

with other methods or algorithms to obtain a hybrid 

algorithm, which can give better results than using 

individual algorithms according to the characteristics of 

each case. 

5. when intending to analyze a microstructural image, it is 

recommended to explore and compare more than one 

technique to find the most suitable one for the 

microstructure in hand, as there is no general method 

suitable for all images, and the segmentation results depend 

on the specific microstructure characteristics and the 

quality of the images, which vary with many parameters 

like the metal or alloy itself, heat treatments, the 

microscope the images were taken with. 

6. Since microscopic images are considered one of the most 

complex images that can be analyzed and dealt with in 

image processing, the same techniques can be used to 

analyze and deal with images in other scientific fields, such 

as medical images and similar engineering and scientific 

specializations. 
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